Quantum Physics B

Olaf Scholten

Kernfysisch Versneller Instituut
NL-9747 AA Groningen
Exam, Friday 24 October, 2003
4 problems (total of 50 points) + one bonus problem for additional points.
The solution of every problem on a separate piece of paper with name and study number.
Use the attached formula list where necessary.

Problem 1 (20 pnts in total)
The electron in a hydrogen atom occupies the combined spin and position state

$$
\begin{equation*}
\Psi=R_{32}\left(\sqrt{3} Y_{2}^{-1} \chi_{+}+\sqrt{2} Y_{2}^{0} \chi_{-}\right) / \sqrt{5} \tag{1}
\end{equation*}
$$

1 pnts

1 pnts
1 pnts
2 pnts
3 pnts

4 pnts

4 pnts
4 pnts

5 pnts

2 pnts

4 pnts
a. If you measured the orbital angular momentum squared $\left(L^{2}\right)$, what values might you get, and what is the probability of each?
b. Same for the z-component of orbital angular momentum $\left(L_{z}\right)$.
c. Same for the z-component of spin angular momentum $\left(S_{z}\right)$.
d. Same for the z-component of total angular momentum, $J_{z}=L_{z}+S_{z}$.
e. Calculate for this wave function the expectation value $<\vec{S} \cdot \vec{n}>$ where $\vec{n}=\hat{x} \cos \alpha+$ $\hat{z} \sin \alpha$.
f. If you measured J^{2}, what values might you get and what is the probability of each? (you may use the table of Clebsch-Gordan coefficients).
g. Calculate $\Phi=J_{-} \Psi$ where $J_{-}=L_{-}+S_{-}$.
h. In an experiment one measures r, the distance to the origin, as well as m_{s}, the z projection of the electron spin. Give the probability density to find the electron with $m_{s}=-1 / 2$ at a distance r.

Problem 2 (15 pnts in total)
The two outermost electrons in the neutral $\mathrm{Ti}(\mathrm{Z}=22,2$ electrons in the 3 d shell $)$ atom are in the $(3 d)^{2}{ }^{2 s+1} L_{J}$ configuration.
a. Show that the coupled wave function in coordinate space is symmetric for $\mathrm{L}=4(\mathrm{G})$
and anti-symmetric for $\mathrm{L}=3(\mathrm{~F})$. (Hint: use the lowering operator for total angular
a. Show that the coupled wave function in coordinate space is symmetric for $\mathrm{L}=4(\mathrm{G})$
and anti-symmetric for $\mathrm{L}=3(\mathrm{~F})$. (Hint: use the lowering operator for total angular momentum).
b.Which configurations are allowed for the two electron (3d) ${ }^{2}$ configuration in the notation ${ }^{2 s+1} L_{J}$ for $\mathrm{L}=4$ and $\mathrm{L}=3$ and why?
c. Show which of the configurations, ${ }^{3} F_{4}$ or ${ }^{3} F_{2}$, is lower in energy due to the spin-orbit force, $H^{\prime}=\frac{\alpha}{2 m^{2}} \frac{1}{r^{3}} L \cdot S$.

4 pnts
d. What is the ground state configuration for the $\mathrm{V}(\mathrm{Z}=23,3$ electrons in the 3 d shell $)$

Problem 3 (10 pnts in total) An electron is at rest in an oscillating magnetic field

$$
\begin{equation*}
\vec{B}=B_{0} \cos (\omega t) \hat{y} \tag{2}
\end{equation*}
$$

The hamiltonian for the particle is now given by $H=g \vec{B} \cdot \vec{S}$, where \vec{S} are the spin matrices.
3 pnts a. Write the (time-dependent) Hamiltonian for this system explicitly as a 2×2 matrix.
3 pnts

4 pnts
c. The electron starts out (at $\mathrm{t}=0$) in the spin-up state with respect to the x -axis $\left(\chi(0)=\chi_{+}^{(x)}\right)$. Determine $\chi(t)$ at any subsequent time.

Problem 4 (15 pnts in total)
To the Hamiltonian of a one-dimensional harmonic-oscillator,

$$
H_{0}(x)=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2}
$$

a perturbation is added,

$$
H^{\prime}(x)=-\lambda x^{3} .
$$

3 pnts
6 pnts
6 pnts

Problem 5 (10 pnts in total) N.B. This exercise is for Bonus points
The Hamiltonian for a certain problem is given by

$$
H(x)=H_{0}(x)+H^{\prime}(x)=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2}-\lambda x^{3},
$$

the same as in the previous problem. Use

$$
\begin{equation*}
\psi(x ; b)=A(\pi / \alpha)^{-1 / 4}(1+2 b \sqrt{\alpha} x) e^{-\alpha x^{2}}=A(<x|0>+b<x| 1>) \tag{3}
\end{equation*}
$$

as a variational wave function with $\alpha=\frac{m \omega}{2 \hbar}$. The states $\mid 0>$ and $\mid 1>$ denote the ground, respectively the first exited state of H_{0}.

2 pnts
4 pnts

4 pnts
a. Calculate the first order correction to the energies of the lowest 2 states.
b. Calculate the second-order correction to the energy of the ground state.
c. Calculate $\langle x\rangle$ for the ground state using first order perturbation theory for the wave function.
a. Show that the trial wave function is properly normalized for $A=\sqrt{\frac{1}{1+b^{2}}}$.
b. Calculate the expectation value of H for the state $\psi(x ; b)$. (Hint: use that $\psi(x ; b)$ is a superposition of eigenstates of H_{0})
c. Use the variational principle to calculate the best approximation to the ground state energy.

The following formula's may be helpful in solving the problems.

Sigma (spin) matrices.

$$
\begin{align*}
& I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \tag{1}\\
& \sigma_{x, y, z}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{2}\\
&(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B})=\vec{A} \cdot \vec{B}+i \vec{\sigma} \cdot(\vec{A} \times \vec{B}) \tag{3}
\end{align*}
$$

Harmonic oscillator wave functions.

Solutions for a harmonic oscillator potential $V(x)=\frac{\omega^{2} m}{2} x^{2}$

$$
\begin{equation*}
u_{n}=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}\left(2^{n} n!\right)^{-1 / 2} H_{n}(y) e^{-y^{2} / 2} \tag{4}
\end{equation*}
$$

with $y=\sqrt{m \omega / \hbar} x$, where the Hermiet polynomials for $n \leq 4$ are given as

$$
\begin{align*}
H_{0}(y) & =1 \tag{5}\\
H_{1}(y) & =2 y \tag{6}\\
H_{2}(y) & =4 y^{2}-2 \tag{7}\\
H_{3}(y) & =8 y^{2}-12 y \tag{8}\\
H_{4}(y) & =16 y^{4}-48 y^{2}+12 \tag{9}
\end{align*}
$$

Matrix elements:

$$
\begin{align*}
<n\left|x^{2}\right| n> & =<n\left|p^{2}\right| n>/(m \omega)^{2}=(2 n+1) \frac{\hbar}{2 m \omega} \tag{10}\\
<n\left|x^{2}\right| n-2> & =-<n\left|p^{2}\right| n-2>/(m \omega)^{2}=\sqrt{n(n-1)} \frac{\hbar}{2 m \omega} \tag{11}\\
<n\left|x^{3}\right| n-1> & =3 n^{3 / 2}\left(\frac{\hbar}{2 m \omega}\right)^{3 / 2} \tag{12}\\
<n\left|x^{3}\right| n-3> & =\sqrt{n(n-1)(n-2)}\left(\frac{\hbar}{2 m \omega}\right)^{3 / 2} \tag{13}\\
<n\left|x^{4}\right| n> & =[2(n+1)(n+2)+(2 n-1)(2 n+1)]\left(\frac{\hbar}{2 m \omega}\right)^{2} \tag{14}\\
<n\left|x^{4}\right| n-2> & =2(2 n-1) \sqrt{n(n-1)}\left(\frac{\hbar}{2 m \omega}\right)^{2} \tag{15}\\
<n\left|x^{4}\right| n-4> & =\sqrt{n(n-1)(n-2)(n-3)}\left(\frac{\hbar}{2 m \omega}\right)^{2} \tag{16}
\end{align*}
$$

Hydrogen wave functions.

$R_{n l}(r)$ are hydrogen-like wave functions with $E_{n}=-\alpha^{2} m_{e} c^{2} / 2 n^{2}=-13.6 \mathrm{eV} / n^{2}$, $a_{0}=\hbar / m_{e} c \alpha$ and $\alpha=e^{2} / \hbar c=1 / 137$.

$$
\begin{align*}
R_{10}(r) & =2\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-Z r / a_{0}} \tag{17}\\
R_{20}(r) & =2\left(\frac{Z}{2 a_{0}}\right)^{3 / 2}\left(1-\frac{Z r}{2 a_{0}}\right) e^{-Z r / 2 a_{0}} \tag{18}\\
R_{21}(r) & =\frac{1}{\sqrt{3}}\left(\frac{Z}{2 a_{0}}\right)^{3 / 2} \frac{Z r}{a_{0}} e^{-Z r / 2 a_{0}} \tag{19}
\end{align*}
$$

Spherical harmonics Y_{l}^{m}.

$$
\begin{align*}
& Y_{0}^{0}=\frac{1}{\sqrt{4 \pi}} ; Y_{1}^{1}=-\sqrt{\frac{3}{8 \pi}} e^{i \phi} \sin \theta ; Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta \tag{21}\\
& Y_{2}^{2}=\sqrt{\frac{15}{32 \pi}} e^{2 i \phi} \sin ^{2} \theta ; Y_{2}^{1}=-\sqrt{\frac{15}{8 \pi}} e^{i \phi} \sin \theta \cos \theta ; Y_{2}^{0}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right), \tag{22}
\end{align*}
$$

with $Y_{l}^{-m}=(-1)^{m}\left[Y_{l}^{m}\right]^{*}$, and the normalization condition:

$$
\begin{align*}
& \int d \Omega\left[Y_{l}^{m}(\Omega)\right] * Y_{l^{\prime}}^{m^{\prime}}(\Omega)=\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta\left[Y_{l}^{m}(\Omega)\right]^{*} Y_{l^{\prime}}^{m^{\prime}}(\Omega)=\delta_{l, l^{\prime}} \delta_{m, m^{\prime}} . \tag{23}\\
& L_{+}=L_{x}+i L_{y} \quad \text { and } \quad L_{+} Y_{l}^{m}=\hbar \sqrt{l(l+1)-m(m+1)} Y_{l}^{m+1} \tag{24}\\
& L_{-}=L_{x}-i L_{y} \quad \text { and } \quad L_{-} Y_{l}^{m}=\hbar \sqrt{l(l+1)-m(m-1)} Y_{l}^{m-1} \tag{25}\\
& L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}=L_{+} L_{-}+L_{z}^{2}-\hbar L_{z}=L_{-} L_{+}+L_{z}^{2}+\hbar L_{z}
\end{align*}
$$

In addition:

$$
\begin{align*}
& \left.\left|l, j, m_{j}>=\sqrt{\frac{l-m}{2 l+1}}\right| Y_{l}^{m+1} \chi_{-}>+\sqrt{\frac{l+m+1}{2 l+1}} \right\rvert\, Y_{l}^{m} \chi_{+}>\text {for } j=l+1 / 2 \tag{26}\\
& \left.\left|l, j, m_{j}>=\sqrt{\frac{l+m+1}{2 l+1}}\right| Y_{l}^{m+1} \chi_{-}>-\sqrt{\frac{l-m}{2 l+1}} \right\rvert\, Y_{l}^{m} \chi_{+}>\text {for } j=l-1 / 2 \tag{27}
\end{align*}
$$

with $m=m_{j}-1 / 2$.

Table 4.7: Clebsch-Gordan coefficients. (A square root sign is understood for every entry; the minus sign, if present, goes outside the radical.)

$$
\begin{align*}
& \int_{-a}^{a} e^{i \alpha x} d x=\frac{2}{\alpha} \sin (\alpha a), \tag{28}\\
& \int_{-a}^{a} \cos \alpha x e^{i k x} d x=\left[\frac{\sin (\alpha+k) a}{\alpha+k}+\frac{\sin (\alpha-k) a}{\alpha-k}\right], \tag{29}\\
& \int_{-a}^{a} \sin \alpha x e^{i k x} d x=i\left[\frac{\sin (\alpha+k) a}{\alpha+k}-\frac{\sin (\alpha-k) a}{\alpha-k}\right], \tag{30}\\
& \int_{-\infty}^{\infty} e^{i\left(k-k^{\prime}\right) x} d x=2 \pi \delta\left(k-k^{\prime}\right), \tag{31}\\
& \int_{-\infty}^{\infty} f\left(p^{\prime}\right) \delta\left(p-p^{\prime}\right) d p^{\prime}=f(p) \quad(\operatorname{mits} f(p) \text { differentieerbaar in } p), \tag{32}\\
& \int_{-\infty}^{\infty} e^{-a(x+b+i c)^{2}} d x=\sqrt{\pi / a}, \tag{33}\\
& \int_{-\infty}^{\infty} x^{2} e^{-a(x+b)^{2}} d x=\left(b^{2}+1 / 2 a\right) \sqrt{\pi / a}, \tag{34}\\
& \int_{-\infty}^{\infty} e^{-a(x+b)^{2}} e^{i k x} d x=\sqrt{\pi / a} e^{-i k b-k^{2} / 4 a}, \tag{35}\\
& \int_{-\infty}^{\infty} e^{-a x^{2}} \cos (b x) d x=\sqrt{\pi / a} e^{-b^{2} / 4 a}, \tag{36}\\
& \int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{1}{2} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{(2 a)^{n}} \sqrt{\pi / a} \text { voor } n \geq 0, \tag{37}\\
& =\frac{1}{2} \sqrt{\frac{\pi}{a}} \quad \text { voor } \quad n=0, \tag{38}\\
& \int_{0}^{\infty} x^{2 n+1} e^{-a x^{2}} d x=\frac{n!}{2 a^{n+1}} \text { met } a>0, \tag{39}\\
& \int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}} \text { met } a>0, \tag{40}\\
& \int_{0}^{\infty} x e^{-a x} \sin (b x) d x=\frac{2 a b}{\left(a^{2}+b^{2}\right)^{2}} \text { met } a>0, \tag{41}\\
& \int_{0}^{\infty} x e^{-a x} \cos (b x) d x=\frac{a^{2}-b^{2}}{\left(a^{2}+b^{2}\right)^{2}} \text { met } a>0, \tag{42}\\
& \int_{0}^{\infty} \frac{\sin ^{2}(p x)}{x^{2}} d x=\frac{1}{2} \pi p, \tag{43}\\
& \int_{-\infty}^{\infty} \frac{1}{x^{2}+a^{2}} e^{i k x} d x=\frac{\pi}{a} e^{-a|k|} \text {, ook geldig voor } \mathrm{k}=0, \tag{44}\\
& \int_{0}^{a} x^{2} \sin ^{2} n \pi x / a d x=\frac{a^{3}}{4}\left[\frac{2}{3}-\frac{1}{(n \pi)^{2}}\right], \tag{45}\\
& \int_{0}^{a} x^{2} \cos ^{2}\left(n-\frac{1}{2}\right) \pi x / a d x=\frac{a^{3}}{4}\left[\frac{2}{3}-\frac{1}{\left(\left(n-\frac{1}{2}\right) \pi\right)^{2}}\right] \text {, } \tag{46}\\
& \int_{0}^{\pi} \sin ^{m} \theta d \theta=\sqrt{\pi} \Gamma\left(\frac{m+1}{2}\right) / \Gamma\left(\frac{m+2}{2}\right), \tag{47}\\
& \int_{0}^{\infty} \frac{x^{a}}{\left(x^{b}+q^{b}\right)^{c}} d x=\frac{q^{a+1-b c}}{b} \frac{\Gamma\left(\frac{a+1}{b}\right) \Gamma\left(c-\frac{a+1}{b}\right)}{\Gamma(c)}, \tag{48}\\
& \int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+a^{2}\right)^{2}} d x=\frac{\pi}{2 a^{3}}, \tag{49}\\
& \int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+a^{2}\right)^{n}} d x=\frac{1 \cdot 3 \cdots(2 n-3)}{2 \cdot 4 \cdots(2 n-2)} \frac{\pi}{a^{2 n-1}} \text { voor } n \geq 2, \tag{50}\\
& \Gamma(n)=(n-1) \Gamma(n-1)=(n-1)!\quad ; \quad \Gamma(1)=0!=1, \tag{51}\\
& \Gamma\left(n+\frac{1}{2}\right)=2^{-n}[1 \cdot 3 \cdot 5 \cdots(2 n-1)] \sqrt{\pi} \quad ; \quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \quad ; \quad \Gamma\left(\frac{3}{2}\right)=\sqrt{\pi} / 2, \tag{52}\\
& \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \text {. } \tag{53}
\end{align*}
$$

