
Quantum Physics B

Olaf Scholten
Kernfysisch Versneller Instituut

NL-9747 AA Groningen

Exam, Friday 24 October, 2003
4 problems (total of 50 points) + one bonus problem for additional points.

The solution of every problem on a separate piece of paper with name and study number.
Use the attached formula list where necessary.

Problem 1 (20 pnts in total)
The electron in a hydrogen atom occupies the combined spin and position state

Ψ = R32
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)
/
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a.1 pnts If you measured the orbital angular momentum squared (L2), what values might you
get, and what is the probability of each?

b.1 pnts Same for the z-component of orbital angular momentum (Lz).

c.1 pnts Same for the z-component of spin angular momentum (Sz).

d.2 pnts Same for the z-component of total angular momentum, Jz = Lz + Sz.

e.3 pnts Calculate for this wave function the expectation value < ~S · ~n > where ~n = x̂ cosα +
ẑ sinα.

f.4 pnts If you measured J2, what values might you get and what is the probability of each?
(you may use the table of Clebsch-Gordan coefficients).

g.4 pnts Calculate Φ = J−Ψ where J− = L− + S−.

h.4 pnts In an experiment one measures r, the distance to the origin, as well as ms, the z-
projection of the electron spin. Give the probability density to find the electron with
ms = −1/2 at a distance r.

Problem 2 (15 pnts in total)
The two outermost electrons in the neutral Ti (Z=22, 2 electrons in the 3d shell) atom

are in the (3d)2 2s+1LJ configuration.

a.5 pnts Show that the coupled wave function in coordinate space is symmetric for L=4 (G)
and anti-symmetric for L=3 (F). (Hint: use the lowering operator for total angular
momentum).

b.2 pnts Which configurations are allowed for the two electron (3d)2 configuration in the notation
2s+1LJ for L=4 and L=3 and why?

c.4 pnts Show which of the configurations, 3F4 or 3F2, is lower in energy due to the spin-orbit
force, H ′ = α

2m2
1
r3L · S.

d.4 pnts What is the ground state configuration for the V (Z=23, 3 electrons in the 3d shell)
atom and give arguments.



Problem 3 (10 pnts in total) An electron is at rest in an oscillating magnetic field

~B = B0 cos(ωt)ŷ . (2)

The hamiltonian for the particle is now given by H = g ~B · ~S, where ~S are the spin matrices.

a.3 pnts Write the (time-dependent) Hamiltonian for this system explicitly as a 2× 2 matrix.

b.3 pnts Write the time-dependent Schrödinger equation for each of the two components of
the spinor-wavefunction for this problem. (Hint: there are 2 solutions, one with time

dependence e+
igB0
2ω

sin ωt, the other with e−
igB0
2ω

sin ωt.

c.4 pnts The electron starts out (at t=0) in the spin-up state with respect to the x-axis

(χ(0) = χ
(x)
+ ). Determine χ(t) at any subsequent time.

Problem 4 (15 pnts in total)
To the Hamiltonian of a one-dimensional harmonic-oscillator,

H0(x) = − h̄2

2m

d2

dx2
+

1

2
mω2x2 ,

a perturbation is added,

H ′(x) = −λx3 .

a.3 pnts Calculate the first order correction to the energies of the lowest 2 states.

b.6 pnts Calculate the second-order correction to the energy of the ground state.

c.6 pnts Calculate < x > for the ground state using first order perturbation theory for the wave
function.

Problem 5 (10 pnts in total) N.B. This exercise is for Bonus points
The Hamiltonian for a certain problem is given by

H(x) = H0(x) +H ′(x) = − h̄2

2m

d2

dx2
+

1

2
mω2x2 − λx3 ,

the same as in the previous problem. Use

ψ(x; b) = A (π/α)−1/4(1 + 2b
√
αx)e−αx2

= A (<x|0> +b <x|1>) (3)

as a variational wave function with α = mω
2h̄

. The states |0> and |1> denote the ground,
respectively the first exited state of H0.

a.2 pnts Show that the trial wave function is properly normalized for A =
√

1
1+b2

.

b.4 pnts Calculate the expectation value of H for the state ψ(x; b). (Hint: use that ψ(x; b) is a
superposition of eigenstates of H0)

c.4 pnts Use the variational principle to calculate the best approximation to the ground state
energy.
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= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
The following formula’s may be helpful in solving the problems.

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Sigma (spin) matrices.

I =

(
1 0
0 1

)
(1)

σx,y,z =

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
(2)

(~σ · ~A)(~σ · ~B) = ~A · ~B + i~σ · ( ~A× ~B) (3)

Harmonic oscillator wave functions.
Solutions for a harmonic oscillator potential V (x) = ω2m

2 x2

un = (
mω

πh̄
)1/4(2nn!)−1/2Hn(y)e−y2/2 (4)

with y =
√

mω/h̄ x, where the Hermiet polynomials for n ≤ 4 are given as

H0(y) = 1 (5)
H1(y) = 2y (6)
H2(y) = 4y2 − 2 (7)
H3(y) = 8y2 − 12y (8)
H4(y) = 16y4 − 48y2 + 12 (9)

Matrix elements:

< n|x2|n > = < n|p2|n > /(mω)2 = (2n + 1)
h̄

2mω
(10)

< n|x2|n− 2 > = − < n|p2|n− 2 > /(mω)2 =
√

n(n− 1)
h̄

2mω
(11)

< n|x3|n− 1 > = 3 n3/2
(

h̄

2mω

)3/2

(12)

< n|x3|n− 3 > =
√

n(n− 1)(n− 2)
(

h̄

2mω

)3/2

(13)

< n|x4|n > = [2(n + 1)(n + 2) + (2n− 1)(2n + 1)]
(

h̄

2mω

)2

(14)

< n|x4|n− 2 > = 2(2n− 1)
√

n(n− 1)
(

h̄

2mω

)2

(15)

< n|x4|n− 4 > =
√

n(n− 1)(n− 2)(n− 3)
(

h̄

2mω

)2

(16)

Hydrogen wave functions.
Rnl(r) are hydrogen-like wave functions with En = −α2mec

2/2n2 = −13.6 eV/n2,
a0 = h̄/mecα and α = e2/h̄c = 1/137.

R10(r) = 2
(

Z

a0

)3/2

e−Zr/a0 , (17)

R20(r) = 2
(

Z

2a0

)3/2 (
1− Zr

2a0

)
e−Zr/2a0 , (18)

R21(r) =
1√
3

(
Z

2a0

)3/2 Zr

a0
e−Zr/2a0 , (19)

R32(r) =
8

81
√

15

(
Z

2a0

)3/2 (Zr

a0

)2

e−Zr/3a0 . (20)
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Spherical harmonics Y m
l .

Y 0
0 =

1√
4π

;Y 1
1 = −

√
3
8π

eiφ sin θ ;Y 0
1 =

√
3
4π

cos θ , (21)

Y 2
2 =

√
15
32π

e2iφ sin2 θ ;Y 1
2 = −

√
15
8π

eiφ sin θ cos θ ;Y 0
2 =

√
5

16π
(3 cos2 θ − 1) , (22)

with Y −m
l = (−1)m[Y m

l ]∗, and the normalization condition:∫
dΩ [Y m

l (Ω)] ∗ Y m′
l′ (Ω) =

∫ 2π

0
dφ

∫ π

0
sin θ dθ [Y m

l (Ω)]∗Y m′
l′ (Ω) = δl,l′ δm,m′ . (23)

L+ = Lx + iLy and L+ Y m
l = h̄

√
l(l + 1)−m(m + 1) Y m+1

l , (24)

L− = Lx − iLy and L− Y m
l = h̄

√
l(l + 1)−m(m− 1) Y m−1

l . (25)

L2 = L2
x + L2

y + L2
z = L+L− + L2

z − h̄Lz = L−L+ + L2
z + h̄Lz

In addition:

|l, j,mj > =

√
l −m

2l + 1
|Y m+1

l χ− > +

√
l + m + 1

2l + 1
|Y m

l χ+ > for j = l + 1/2 (26)

|l, j,mj > =

√
l + m + 1

2l + 1
|Y m+1

l χ− > −

√
l −m

2l + 1
|Y m

l χ+ > for j = l − 1/2 (27)

with m = mj − 1/2.
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∫ a

−a
eiαx dx =

2
α

sin (αa) , (28)∫ a

−a
cos αx eikx dx =

[
sin(α + k)a

α + k
+

sin(α− k)a
α− k

]
, (29)∫ a

−a
sinαx eikx dx = i

[
sin(α + k)a

α + k
− sin(α− k)a

α− k

]
, (30)∫ ∞

−∞
ei(k−k′)x dx = 2π δ(k − k′) , (31)∫ ∞

−∞
f(p′) δ(p− p′) dp′ = f(p) (mits f(p) differentieerbaar in p) , (32)∫ ∞

−∞
e−a(x+b+ic)2dx =

√
π/a , (33)∫ ∞

−∞
x2e−a(x+b)2dx = (b2 + 1/2a)

√
π/a , (34)∫ ∞

−∞
e−a(x+b)2eikxdx =

√
π/a e−ikb−k2/4a , (35)∫ ∞

−∞
e−ax2

cos(bx) dx =
√

π/a e−b2/4a , (36)∫ ∞

0
x2ne−ax2

dx = 1
2

1 · 3 · 5 · · · (2n− 1)
(2a)n

√
π/a voor n ≥ 0 , (37)

= 1
2

√
π

a
voor n = 0 , (38)∫ ∞

0
x2n+1e−ax2

dx =
n!

2 an+1
met a > 0 , (39)∫ ∞

0
xne−axdx =

n!
an+1

met a > 0 , (40)∫ ∞

0
xe−ax sin(bx) dx =

2ab

(a2 + b2)2
met a > 0 , (41)∫ ∞

0
xe−ax cos(bx) dx =

a2 − b2

(a2 + b2)2
met a > 0 , (42)∫ ∞

0

sin2(px)
x2

dx = 1
2πp , (43)∫ ∞

−∞

1
x2 + a2

eikxdx =
π

a
e−a|k| , ook geldig voor k=0 , (44)∫ a

0
x2 sin2 nπx/a dx =

a3

4

[
2
3
− 1

(nπ)2

]
, (45)∫ a

0
x2 cos2(n− 1

2
)πx/a dx =

a3

4

[
2
3
− 1

((n− 1
2)π)2

]
, (46)∫ π

0
sinm θ dθ =

√
πΓ(

m + 1
2

)/Γ(
m + 2

2
) , (47)∫ ∞

0

xa

(xb + qb)c
dx =

qa+1−bc

b

Γ(a+1
b )Γ(c− a+1

b )
Γ(c)

, (48)∫ ∞

−∞

1
(x2 + a2)2

dx =
π

2 a3
, (49)∫ ∞

−∞

1
(x2 + a2)n

dx =
1 · 3 · · · (2n− 3)
2 · 4 · · · (2n− 2)

π

a2n−1
voor n ≥ 2, (50)

Γ(n) = (n− 1)Γ(n− 1) = (n− 1)! ; Γ(1) = 0! = 1 , (51)
Γ(n + 1

2) = 2−n[1 · 3 · 5 · · · (2n− 1)]
√

π ; Γ(1
2) =

√
π ; Γ(3

2) =
√

π/2 , (52)
cos2 x = 1

2 (1 + cos 2x) . (53)
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